
LS01: The Ideas Behind
Coding

Things to Note

● Tuesday is virtual videos you can watch at any time
○ But we will be available during class time on Campuswire to answer any questions!
○ There will be questions on Gradescope for you to answer Tuesday night!

● LS00 (syllabus) due TONIGHT
○ If you’re still waiting to be enrolled, email comp110help@gmail.com for an extension.

● EX00 released!
● OPEN HOUSE in Sitterson Lower Floor Today and Tomorrow 12-6 pm

mailto:comp110help@gmail.com

Today’s Format is A Little Different…

● Little more lecture-y
● Shorter
● A little more vague

Why?
● A gentler introduction
● Want you to get a bigger picture of the little things we’re going to talk about later
● I don’t expect you to be able to do any of these things tomorrow… that’s what

this class is for!

Computational Thinking

● Strategic thought and problem-solving
● Can help perform a task better, faster, cheaper, etc.
● Examples:

○ Meal prepping
○ Making your class schedule
○ “Life Hacks”

Algorithms

Input is data given to an algorithm

An algorithm is a series of steps

An algorithm returns some result

An algorithm may be influenced by
its environment and it may produce
side-effects which influence its
environment.

Example: My dissertation

Algorithm

Discussion

What are examples of computational thinking that you use day to day?

What kind of algorithms do you use to implement these ideas?

What is an algorithm?

● A set of steps to solve a general problem
● Finite
● Can handle a problem of arbitrary size

Classic Algorithm: Sorting

Instructions to sort these cards (or any set of cards) from least to greatest?

Insertion Sort: Build sorted deck.

Insertion Sort: Build sorted deck.

Insertion Sort: Build sorted deck.

Insertion Sort: Build sorted deck.

Insertion Sort: Build sorted deck.

Selection Sort: repeatedly choose minimum

Selection Sort: repeatedly choose minimum

Selection Sort: repeatedly choose minimum

Selection Sort: repeatedly choose minimum

Selection Sort: repeatedly choose minimum

How do we express these steps?

Selection Sort:

● You’re going to make a new, sorted deck, so let’s call that our “new deck”
● From your old deck, repeatedly find the card with the lowest value and add it

to the new deck until the old deck is empty

Pseudocode

Looks like code, but simplified and readable.

Not meant to run on a computer.

Helps you outline what your algorithm is
going to look like.

You should be able to expand on your
pseudocode to help you write actual code!

If (going to hit stuff):
dont()

Back to Selection Sort…

Original instructions

● You’re going to make a new, sorted deck,
so let’s call that our “new deck”

● From your old deck, repeatedly find the
card with the lowest value and add it to the
new deck until the old deck is empty

Pseudocode:

new_deck = new CardDeck()

Back to Selection Sort…

Original instructions

● You’re going to make a new, sorted deck,
so let’s call that our “new deck”

● From your old deck, repeatedly find the
card with the lowest value and add it to the
new deck until the old deck is empty

Pseudocode:

new_deck = new CardDeck()

Assignment

Back to Selection Sort…

Original instructions

● You’re going to make a new, sorted deck,
so let’s call that our “new deck”

● From your old deck, repeatedly find the
card with the lowest value and add it to the
new deck until the old deck is empty

Pseudocode:

new_deck = new CardDeck()

Repeatedly until old_deck is empty:

low_card = find_lowest_card(old_deck)

new_deck = new_deck + low_card

Back to Selection Sort…

Original instructions

● You’re going to make a new, sorted deck,
so let’s call that our “new deck”

● From your old deck, repeatedly find the
card with the lowest value and add it to the
new deck until the old deck is empty

Pseudocode:

new_deck = new CardDeck()

Repeatedly until old_deck is empty:

low_card = find_lowest_card(old_deck)

new_deck = new_deck + low_card

Loop

Back to Selection Sort…

Original instructions

● You’re going to make a new, sorted deck,
so let’s call that our “new deck”

● From your old deck, repeatedly find the
card with the lowest value and add it to the
new deck until the old deck is empty

Pseudocode:

new_deck = new CardDeck()

Repeatedly until old_deck is empty:

low_card = find_lowest_card(old_deck)

new_deck = new_deck + low_card

Finding the Lowest Card

● Go from left to right
● Remember the lowest card you’ve seen so far and compare it to the next

cards

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:2 < 5?

Finding the Lowest Card

Low card:3 < 2?

Finding the Lowest Card

Low card:5 < 2?

Finding the Lowest Card

Low card:5 < 2?
Relational
Operator

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_card

Finding the Lowest Card Pseudocode

● Go from left to right
● Remember the lowest card

you’ve seen so far and compare
it to the next cards

Pseudocode:

lowest_card = first card in deck

Repeatedly until end of deck:

if current_card < lowest_card:

lowest_card = current_cardConditional

Takeaways

● Pseudocode: simple and readable version of algorithm that resembles code

● Assignment Operator: Assigns a variable some value

● Loop Statement: Repeatedly performs an action a fixed number of times

● Relational Operator: Compares two values

● Conditional Statement: A statement that only performs an action under certain conditions

Again, you don’t need to know these right now, but I want you to have a point of reference

when you do learn them!

What is an algorithm?

Environment

Input

Input

Input
Algorithm Result!

